مدلسازی عرض عملیات خاکی جاده های جنگلی با استفاده از شبکه عصبی مصنوعی و رگرسیون خطی چندگانه
نویسندگان
چکیده مقاله:
عرض عملیات خاکی، به عنوان یکی از مهم ترین پارامترهای تعیین کننده حجم خاکبرداری و خاکریزی، در هزینه و تخریب ناشی از عملیات جاده سازی در جنگل مؤثر است. هدف از این پژوهش بررسی امکان پیش بینی عرض عملیات خاکی جاده های جنگلی است. برای نیل به این هدف دو روش شبکه عصبی مصنوعی و رگرسیون خطی چندگانه بکار گرفته شده است. برای این منظور، 192 مقطع عرضی در جادههای جنگلی سوردار-واتاشان مورد بررسی قرار گرفتند. در هر مقطع داده های مربوط به پارامترهای فیزیوگرافی شامل شیب طبیعی دامنه، درجه سختی زمین و بافت خاک به عنوان متغیرهای مستقل و عرض عملیات خاکی به عنوان متغیر وابسته جمع آوری شدند. مدل های پیش بینی عرض عملیات خاکی با استفاده از شبکه عصبی پیشخور با الگوریتم یادگیری پس انتشار خطا و رگرسیون خطی چندگانه با روش گامبهگام به ترتیب در محیط نرمافزارهای 6/7MATLAB و R ساخته شدند و آزمون های همبستگی و تجزیه واریانس نیز در محیط 19SPSS صورت گرفت. بر اساس آماره های ضریب تبیین، مجذور میانگین مربعات خطا، میانگین مطلق خطا و درصد خطا، مدل شبکه عصبی توانست موفق تر از رگرسیون خطی چندگانه، عرض عملیات خاکی را پیش بینی کند به طوری که 2R و RMSE به ترتیب در مدل شبکه عصبی 65/0 و 13/2 و در مدل رگرسیونی 24/0 و 28/8 بدست آمد. نتایج این پژوهش زمینه را برای طراحی شبکه عصبی مصنوعی با قابلیت پیش بینی مناسبی برای عرض عملیات خاکی جاده های جنگلی در شرایط توپوگرافی جنگل های کوهستانی فراهم می آورد.
منابع مشابه
مدل سازی عرض عملیات خاکی جاده های جنگلی با استفاده از شبکه عصبی مصنوعی و رگرسیون خطی چندگانه
عرض عملیات خاکی، به عنوان یکی از مهم ترین پارامترهای تعیین کننده حجم خاکبرداری و خاکریزی، در هزینه و تخریب ناشی از عملیات جاده سازی در جنگل مؤثر است. هدف از این پژوهش بررسی امکان پیش بینی عرض عملیات خاکی جاده های جنگلی است. برای نیل به این هدف دو روش شبکه عصبی مصنوعی و رگرسیون خطی چندگانه بکار گرفته شده است. برای این منظور، 192 مقطع عرضی در جادههای جنگلی سوردار-واتاشان مورد بررسی قرار گرفتند....
متن کاملبرآورد عرض عملیات خاکی جاده های جنگلی با استفاده از شبکه عصبی
چکیده ضروری است که با بررسی مدل های پیش بینی کننده جدیدو یافتن نقاط ضعف و قوت هر یک از آنها، بتوان در مطالعات آینده، مدلی که محققان را به بهترین پیش بینی رهنمون سازد، پیشنهاد نمود. هدف از این پژوهش بررسی امکان پیش بینی عرض عملیات خاکی با روش شبکه عصبی مصنوعی قبل از ساخت جاده با استفاده از فاکتور های شکل زمین (شامل ارتفاع از سطح دریا، شیب طبیعی دامنه و جهت آن)، میزان سنگلاخی بودن، بافت و رطوبت ...
15 صفحه اولبرآورد دمای خاک از دادههای هواشناسی با استفاده از مدلهای یادگیری ماشین سریع، شبکه عصبی مصنوعی و رگرسیون خطی چندگانه
دمای خاک عامل کلیدی است که فرآیندها و خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک را کنترل میکند؛ لذا بر کمیت و کیفیت تولید محصولات کشاورزی تأثیر میگذارد. هدف از انجام این پژوهش برآورد دمای خاک با استفاده از پارامترهای هواشناسی به روشهای مختلف ماشین یادگیری بوده است. بدین منظور دادههای هواشناسی و دمای خاک در عمقهای 5، 10، 20، 30، 50 و 100 سانتیمتری از 17 ایستگاه سینوپتیک استان خوزستان مربوط ...
متن کاملمدلسازی شاخص وضعیت روسازی (PCI) با استفاده از رگرسیون خطی چندگانه و شبکه عصبی انتشار برگشتی
یکیازمهمتریناهدافیکسیستممدیریتروسازی،تعییناولویتهاوزمانبهینهبرایتعمیرات،از طریقپیشبینیوضعیتروسازیاست.درواقعهدفسیستممدیریتروسازی(PMS)،<...
متن کاملتخمین مدول الاستیسیته سنگ بکر با استفاده از شبکه عصبی مصنوعی و رگرسیون غیر خطی
مدول الاستیسیته سنگ بکر یکی از ملزومات اساسی بسیاری از مطالعات ژئومکانیکی و به ویژه پروژه های حفاری سنگ می باشد. برای تعیین مستقیم مدول الاستیسیته نمونه مغزههای باکیفیت بالا و هندسه مناسب مورد نیاز بوده و تهیه نمونههای مناسب از سنگهای شکسته و هوازده برای این منظور به آسانی امکانپذیر نیست. بنابراین مدلهای پیشبینی مدول الاستیسیته براساس خصوصیات شاخص سنگ بکر ارائه گردیدهاند. در این مطالعه ب...
متن کاملپیشبینی اسلامپ بتن با استفاده از مدل شبکه عصبی مصنوعی و روش رگرسیون چندمتغیره خطی
روشهای مختلفی جهت اندازهگیری کارایی بتن وجود دارد که یکی از متداولترین و معمولترین روشها، آزمایش اسلامپ است. جهت دستیابی به مخلوطهای بتنی با اسلامپ مورد نظر، باید مخلوطهای مختلف بتنی ساخته شود و آزمایش اسلامپ بر روی آنها صورت گیرد. جهت صرفهجویی در زمان، هزینه و مصالح بهتر است از روشهای هوشمندی جهت پیشبینی اسلامپ بتن بر اساس نتایج مربوط به تعداد معینی از مخلوطهای بتنی استفاده شود. د...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 3
صفحات 285- 296
تاریخ انتشار 2014-12-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023